Research

Catalytic oxidation of C-C bond is a key technology to transform petroleum-based as well as sustainable biomass feedstock into more valuable oxygenates. We herein describe a convenient and useful oxidation strategy of converting ketones into carboxylic acids using homogeneous copper catalyst without additives and with O2 as the terminal oxidant. A wide range of aryl and aliphatic ketones as well as β–O–4 lignin models were selectively oxidized to acids via C-C bond cleavage. Mechanism studies by

Depolymerisation of lignin to aromatics is a challenging task. We herein report that a Cu(OAc)2/BF3·OEt2 catalyst is effective in simultaneously cleaving C–C bonds in β-1 and β-O-4 ketones, yielding esters and phenols. In-depth studies show that C–H bond activation is the rate determining step for C–C bond cleavage. BF3·OEt2 promotes the reaction via activating the β-C–H bond. This study offers the potential to obtain aromatic esters from lignin.

Conversion of low-carbon olefins to higher alcohols or olefins via the formation of C–C bonds is an increasingly important topic. We herein report an example of converting isobutene and formaldehyde (38 wt % aqueous solution) to 3-methyl-1,3-butanediol (MBD), a precursor for isoprene. The reaction occurs through a Prins condensation–hydrolysis reaction over a praseodymium (Pr)-doped CeO2 catalyst. The best MBD yield (70%) is achieved over the Pr-doped CeO2 catalyst. Catalyst characterizations wi

We herein report a new strategy of directly converting amines and CO to formamides with 100% atom utilization efficiency. It is suitable for up to 25 amine substrates with no additives. Ru/ceria is found to be an excellent catalyst for this reaction due the efficient co-activation of CO and amine on Ru species.

One of the challenges of depolymerizing lignin to valuable aromatics lies in the selective cleavage of the abundant C–O bonds of β-O-4 linkages. Herein we report a photocatalytic oxidation–hydrogenolysis tandem method for cleaving C–O bonds of β-O-4 alcohols. The Pd/ZnIn2S4 catalyst is used in the aerobic oxidation of α-C–OH of β-O-4 alcohols to α-C═O with 455 nm light, and then a TiO2–NaOAc system is employed for cleaving C–O bonds neighboring the α-C═O bonds through a hydrogenolysis reaction b

Efficient cleavage of lignin β-O-4 ether bonds to produce aromatics is a challenging and attractive topic. Recently a growing number of studies reveal the initial oxidation of CαHOH to Cα=O can decrease the β-O-4 bond dissociation energy (BDE) from 274.0 kJ•mol-1 to 227.8 kJ•mol-1, and thus the β-O-4 bond is more readily cleaved in the subsequent transfer hydrogenation, or acidolysis. Here we show that the first reaction step, except in the above-mentioned pre-oxidation methods, can be a Cα-OH b

We herein report a two-step strategy for oxidative cleavage of lignin C–C bond to aromatic acids and phenols with molecular oxygen as oxidant. In the first step, lignin β-O-4 alcohol was oxidized to β-O-4 ketone over a VOSO4/TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl)] catalyst. In the second step, the C–C bond of β-O-4 linkages was selectively cleaved to acids and phenols by oxidation over a Cu/1,10-phenanthroline catalyst. Computational investigations suggested a copper-oxo-bridged dimer w

Lignin in lignocellulosic biomass is the only renewable source for aromatic compounds, and effective valorization of lignin remains a significant challenge in biomass conversion processes. We have performed density functional theory calculations and experiments to investigate the cleavage mechanism of the C–O ether bond in the lignin model compound 2-phenoxy-1-phenylethanol with a β-O-4 linkage over a Pd(111) catalyst surface model. We propose the favorable reaction pathway to proceed as follows

We present an experimental and computational study of the elementary steps of hydrazine hydrogen transfer on crystalline MoO2, and demonstrate its unique bifunctional metallic-basic properties in a catalytic hydrogenation reaction. Density functional theory (DFT) calculations suggest that the stepwise hydrogen transfer via the prior cleavage of the N–H bond rather than the N–N bond, is the key step to create the dissociated hydride and proton species on the dual Mo and O sites, marking its diffe

Selective oxidative cleavage of a C-C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C-C bond cleavage of ketone for C-N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In-depth studies show that both α-C-H and β-C-H bonds adjacent to the carbonyl groups are indispensable for the C-C bond cleavage. DFT