Research

In many catalytic processes, metastable reaction intermediates are more valuable and desirable than final products. Here, we report Ni–Niδ+ clusters on ceria where the extent of reduction of nickel oxide/ceria in H2 has been optimized. This catalyst shows high selectivity in reducing nitrobenzene to azoxybenzene, the latter usually being metastable. Due to strong electronic metal–support interactions between Ni and ceria, mixed Ni–Niδ+ clusters are formed on ceria even after reduction at 500 °C

Obtaining high selectivity of aromatic monomers from renewable lignin has been extensively pursued but is still unsuccessful, hampered by the need to efficiently cleave C–O/C–C bonds and inhibit lignin proliferation reactions. Herein, we report a transfer hydrogenolysis protocol using a heterogeneous ZnIn2S4 catalyst driven by visible light. In this process, alcoholic groups (CαH–OH) of lignin act as hydrogen donors. Proliferation of phenolic products to dark substances is suppressed under visib

Selective cleavage of C–C bonds is pursued as a useful chemical transformation method in biomass utilization. Herein, we report a hybrid CuOx/ceria/anatase nanotube catalyst in the selective oxidation of C–C bonds under visible light irradiation. Using the lignin β-1 model as a substrate offers 96% yields of benzaldehydes. Characterization results by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy element (EDX) mapping

This work demonstrates the synthesis of an efficient photocatalyst, Au25(PPh3)10Cl2(SC3H6SiO3)5/TiO2, for selective oxidation of amines to imines. The photocatalyst is prepared via hydrolysis of Au25(PPh3)10Cl2[(SC3H6Si(OC2H5)3]5 nanoclusters in the presence of TiO2 support. The gold nanoclusters exhibit good photocatalytic activity using visible light and under mild thermal conditions for the selective oxidation with molecular oxygen (O2). The turnover frequency (TOF) of 4-methylbenzylamine oxi

For lignin valorization, simultaneously achieving the efficient cleavage of ether bonds and restraining the condensation of the formed fragments represents a challenge thus far. Herein, we report a two-step oxidation–hydrogenation strategy to achieve this goal. In the oxidation step, the O2/NaNO2/DDQ/NHPI system selectively oxidizes CαH–OH to Cα═O within the β-O-4 structure. In the subsequent hydrogenation step, the α-O-4 and the preoxidized β-O-4 structures are further hydrogenated over a NiMo

Selective oxidative cleavage of C-C bond is pivotal for producing functionalized molecules, useful for organic synthesis and biomass utilization. We herein report the oxidative C(OH)-C bond cleavage of secondary alcohols to acids over a copper/1, 10-phenanthroline complex with molecular oxygen as the oxidant. A wide range of secondary alcohols are converted into acids with up to 98% yields. More interestingly, it is effective for breaking up lignin model systems into acids, which is rarely achie

Catalytic oxidation of C-C bond is a key technology to transform petroleum-based as well as sustainable biomass feedstock into more valuable oxygenates. We herein describe a convenient and useful oxidation strategy of converting ketones into carboxylic acids using homogeneous copper catalyst without additives and with O2 as the terminal oxidant. A wide range of aryl and aliphatic ketones as well as β–O–4 lignin models were selectively oxidized to acids via C-C bond cleavage. Mechanism studies by

Depolymerisation of lignin to aromatics is a challenging task. We herein report that a Cu(OAc)2/BF3·OEt2 catalyst is effective in simultaneously cleaving C–C bonds in β-1 and β-O-4 ketones, yielding esters and phenols. In-depth studies show that C–H bond activation is the rate determining step for C–C bond cleavage. BF3·OEt2 promotes the reaction via activating the β-C–H bond. This study offers the potential to obtain aromatic esters from lignin.

Conversion of low-carbon olefins to higher alcohols or olefins via the formation of C–C bonds is an increasingly important topic. We herein report an example of converting isobutene and formaldehyde (38 wt % aqueous solution) to 3-methyl-1,3-butanediol (MBD), a precursor for isoprene. The reaction occurs through a Prins condensation–hydrolysis reaction over a praseodymium (Pr)-doped CeO2 catalyst. The best MBD yield (70%) is achieved over the Pr-doped CeO2 catalyst. Catalyst characterizations wi

We herein report a new strategy of directly converting amines and CO to formamides with 100% atom utilization efficiency. It is suitable for up to 25 amine substrates with no additives. Ru/ceria is found to be an excellent catalyst for this reaction due the efficient co-activation of CO and amine on Ru species.