Herein, we report CO2-mediated metathesis reactions between amines and DMF to synthesize formamides. More than 20 amines, including primary, secondary, aromatic, and heterocyclic amines, diamines, and amino acids, are converted to the corresponding formamides with good-to-excellent conversions and selectivities under mild conditions. This strategy employs CO2 as a mediator to activate the amine under metal-free conditions. The experimental data and in situ NMR and attenuated total reflectance IR spectroscopy measurements support the formation of the N-carbamic acid as an intermediate through the weak acid–base interaction between CO2 and the amine. The metathesis reaction is driven by the formation of a stable carbamate, and a reaction mechanism is proposed.

Heterogeneously catalyzed synthesis of quinazolinones or quinazolines is reported in this study. An α-MnO2 catalyst is found to be highly active and selective in the oxidative cyclization of anthranilamides or aminobenzylamines with alcohols using TBHP as an oxidant. This protocol exhibits a broad substrate scope, and is operationally simple without an additive.

We here report a new protocol for the formylation of various amines, primary or secondary, aromatic or alkyl, cyclic or linear, mono- or di-amine, with dimethylformamide (DMF) as the formylation reagent to obtain the corresponding formamides in good to excellent yields over CeO2 catalyst. The reaction requires no homogeneous acidic or basic additives and is tolerant to water.

Gold nanoparticles supported on ceria{110} crystal planes were more reactive than on ceria{111} and {100} in the oxidative dehydrogenation of alcohols. Kinetic analysis and a Hammett plot suggest that hydride transfer is involved, and the cationic gold is catalytically active.

Ceria showed excellent catalytic activity in the hydrolysis of 4-methyl-1,3-dioxane to 1,3-butanediol in 95% yield and in the one-pot synthesis of 1,3-butanediol from propylene and formaldehyde via Prins condensation and hydrolysis reactions in an overall yield of 60%. In-depth investigations revealed that ceria is a water-tolerant Lewis acid catalyst, which has seldom been reported previously. The ceria catalysts showed rather unusual high activity in hydrolysis, with a turnover number (TON) of 260. Our conclusion that ceria functions as a Lewis acid catalyst in hydrolysis reactions is firmly supported by thorough characterizations with IR and Raman spectroscopy, acidity measurements with IR and 31P magic-angle-spinning NMR spectroscopy, Na+/H+ exchange tests, analyses using the in situ active-site capping method, and isotope-labeling studies. A relationship between surface vacancy sites and catalytic activity has been established. CeO2(111) has been confirmed to be the catalytically active crystalline facet for hydrolysis. Water has been found to be associatively adsorbed on oxygen vacancy sites with medium strength, which does not lead to water dissociation to form stable hydroxides. 

Valorization of native birch wood lignin into monomeric phenols over nickel-based catalysts has been studied. High chemoselectivity to aromatic products was achieved by using Ni-based catalysts and common alcohols as solvents. The results show that lignin can be selectively cleaved into propylguaiacol and propylsyringol with total selectivity >90% at a lignin conversion of about 50%. Alcohols, such as methanol, ethanol and ethylene glycol, are suitable solvents for lignin conversion. Analyses with MALDI-TOF and NMR show that birch lignin is first fragmented into smaller lignin species consisting of several benzene rings with a molecular weight of m/z ca. 1100 to ca. 1600 via alcoholysis reaction. The second step involves the hydrogenolysis of the fragments into phenols. The presence of gaseous H2 has no effect on lignin conversion, indicating that alcohols provide active hydrogen species, which is further confirmed by isotopic tracing experiments. Catalysts are recycled by magnetic separation and can be reused four times without losing activity. The mechanistic insights from this work could be helpful in understanding native lignin conversion and the formation of monomeric phenolics via reductive depolymerization.

The sensing of electrons confined inside surface defect sites has been demonstrated. Tetracyanoethylene was employed as a single-electron acceptor to characterize the reduction of fully oxidized MoO3. Electron transfer deposits negative charge on closely contacted gold nanoparticles on the surface, which explains the high catalytic activity in the aerobic oxidation of alcohols.

We report a strategy for the catalytic conversion of lignosulfonate into phenols over heterogeneous nickel catalysts. Aryl–alkyl bonds (C–O–C) and hydroxyl groups (–OH) are hydrogenated to phenols and alkanes, respectively, without disturbing the arenes. The catalyst is based on a naturally abundant element, and is recyclable and reusable.

Design, synthesis and characterization of nanosized Mo-V-O oxides and their catalytic applications in C-H bond activation reactions

Synthesis of nanostructured molybdenum trioxides and their catalytic performance in carbon-carbon coupling reactions

Page 4 of 5 (42 items)    |   12345>>