2021

2021 2020 2019 2018 2017 2016 A full list

2021

  • Heterogeneous Ru/TiO2 for hydroaminomethylation of olefins: multicomponent synthesis of amines

    Jinghua An, Zhuyan Gao, Yehong Wang, Zhixin Zhang, Jian Zhang, Lu Li, Bo Tang, Feng Wang*

    Green Chem., 2021, DOI: 10.1039/d1gc00113b.

    Full-text linkage

    Synthesizing amines via the hydroaminomethylation (HAM) reaction of olefins, a multicomponent reaction, has been regarded as one of the most attractive methods compared with the traditional methods considering the atom economy and environmental friendliness. However, the use of homogeneous catalysts, complex ligands containing diphosphine or nitrogen, and base or acid additives has severely hampered the utilization of these methods. Herein, an efficient heterogeneous Ru/TiO2-catalyzed HAM reaction of olefins is developed without any additives. Various amines, including secondary and tertiary amines, can be successfully obtained from olefins including aromatic and aliphatic olefins. Systematic studies demonstrate the lower electron density of Ruδ+ and the higher number of acid sites of Ru/TiO2, leading to the high HAM reaction activity of olefins. Most importantly, nitrobenzene derivatives can also be transformed to the corresponding products over Ru/TiO2 in excellent yields.

  • Catalytic cleavage of lignin C-O and C-C bonds

    Chaofeng Zhang, Feng Wang*

    Elsevier, 2021, DOI: 10.1016/bs.adioch.2020.12.004.

    Full-text linkage

    In this chapter, focusing on lignin catalytic depolymerization to aromatic chemicals, we herein first provide our understanding about the scientific question and strategic foundation process in lignin depolymerization, and then clarify them by mainly presenting our recent studies. Firstly, we introduce our research on direct protolignin depolymerization via a fragmentation–hydrogenolysis process in alcohol solvents. Then, focusing on the catalytic cleavage of lignin C-C and C-O bonds, we shed light on a recapitulative adjacent functional group modification (AFGM) strategy for the conversion of lignin models and apply the established methods in the real lignin conversion via a bottom-up research approach......

  • Nb2O5‐based photocatalysts

    Kaiyi Su, Huifang Liu, Zhuyan Gao, Paolo Fornasiero*, Feng Wang*

    Adv. Sci., 2021, 2003156

    Full-text linkage

    Niobium pentoxide (Nb2O5), a typically nontoxic metal oxide, is eco‐friendly and exhibits strong oxidation ability, and has attracted considerable attention from researchers. Furthermore, unique Lewis acid sites (LASs) and Brønsted acid sites (BASs) are observed on Nb2O5 prepared by different methods. Herein, the recent advances in the synthesis and application of Nb2O5‐based photocatalysts, including the pure Nb2O5, doped Nb2O5, metal species supported on Nb2O5, and other composited Nb2O5 catalysts, are summarized. An overview is provided for the role of size and crystalline phase, unsaturated Nb sites and oxygen vacancies, LASs and BASs, dopants and surface metal species, and heterojunction structure on the Nb2O5‐based catalysts in photocatalysis. Finally, the challenges are also presented, which are possibly overcome by integrating the synthetic methodology, developing novel photoelectric characterization techniques, and a profound understanding of the local structure of Nb2O5.

  • Advancing development of biochemicals through the comprehensive evaluation of bio-ethylene glycol

    Zhitong Zhao, Jingyang Jiang, Mingyuan Zheng, Feng Wang*

    Chem. Eng. J., 2021, doi:10.1016/j.cej.2021.128516

    Full-text linkage

    To achieve the economic benefits of bio-EG, research strategies, such as raising the product yield, changing hydrogen sources, increasing feedstock collection efficiency, and lowing water consumption were explored and proved to be effective measures. In addition, a carbon tax of 184 and 598 CNY·t-1 CO2eq are the breakeven points to reach economic benefits of bio-EG compared to petro-EG and coal-EG, respectively. This work aims at conducting a comprehensive evaluation of bio-EG to promote its practical application, and also shedding light on bright prospects and general approaches to develop lignocellulosic biochemicals.

  • Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process

    Hongman Sun, Yehong Wang, Shaojun Xu, Ahmed I. Osman, Gavin Stenning, Jianyu Han, Shuzhuang Sun, David Rooney, Paul T. Williams*, Feng Wang*, Chunfei Wu*

    Fuel, 2021, doi:10.1016/j.fuel.2020.119308

    Full-text linkage

    The distance between catalytic sites (Ni) and sorbents (CaO) on the performance of integrated CO2 capture and utilization (ICCU) process is crucial important because the sorbents demonstrate a dramatic volume increase during carbonation reaction (1st stage of ICCU) and sequentially cover the catalytic sites and retard the CO2 conversion (2nd stage of ICCU). Herein, we synthesized various Ni/CaO-based dual functional materials (DFMs) with different distances between active sites and sorbents to provide different volume spaces for the growth of CaCO3 during the carbonation reaction. It is found that both 1%NiCaO and 10%NiCaO synthesized by a one-pot method exhibited a low CO2 conversion (38% and 45%, respectively) and CH4 selectivity (58% and 69%, respectively) as the distance between catalytic sites and sorbents was so close that the Ni active sites were covered by the formed CaCO3 during carbonation reaction......